

Exploring polarized vector bosons to measure the Higgs boson properties in diboson channels

G. Barone^a and L. Xu^b

^aBrookhaven National Laboratory ^bUniversity of Science and Technology China.

Higgs physics

Discovery at Run-I opened the path for properties measurements at Run-2

Unbroken symmetry

Power law expansion of the potential

$$V(h) = \frac{1}{4}\lambda h^4 + \lambda vh^3 + \lambda v^2h^2$$

- Understanding the perturbative expansion of its potential $(\lambda v^2 h^2)$.
- The Higgs boson (H) mass (m_H) is a fundamental parameter of the Standard Model.
- Precise measurements the Higgs interactions can indicate presence of new physics.

The Higgs sector is a portal to constraining the understanding of undiscovered phenomena

Prediction and uncertainties of Higgs production processes as a function of the m_H

Broken symmetry

Introduction

- Measurements of the Higgs properties on its pole.
 - ▶ Direct measurement and sensitivity to couplings ($\kappa_g \kappa_V \kappa_t$) ~ the current LHC program.
- Current reach same order of magnitude as that expected with 20 times the data.
 - ▶ New ideas needed to extend the reach in phase-space and to constrain systematics.

G. Barone

Off shell

- Sensitivity from on shell production.
 - ▶ Direct measurement and sensitivity to couplings $(\kappa_g \kappa_V \kappa_t)$.

$$|H|^2 = \frac{1}{2} \left(v^2 + 2hv + h^2 + 2\phi^+\phi^- + (\phi^0)^2 \right)$$

- Investigate study of H couplings in off-shell production.
 - ▶ Sensitivity in longitudinally polarised vector bosons production.

- Simultaneous study from same final state at different energy regimes:
 - > capturing energy dependence induced by new phenomena
 - Ieverage arm on $\mathrm{H}(\mathrm{HH})$ couplings from measurements at different energy regimes.

Off shell

- Sensitivity from on shell production.
 - ▶ Direct measurement and sensitivity to couplings $(\kappa_g \kappa_V \kappa_t)$.

$$|H|^2 = \frac{1}{2} \left(v^2 + 2hv + h^2 + 2\phi^+\phi^- + (\phi^0)^2 \right)$$

arXiv:1812.09299

- Investigate study of H couplings in off-shell production.
 - Sensitivity in longitudinally polarised vector bosons production.

$$\kappa_g : pp \to W_L^+ W_L^-, Z_L Z_L$$

$$\kappa_t : pp \to jt + V_L V_L'$$

$$\kappa_V : pp \to jj + V_L V_L',$$

- Simultaneous study from same final state at different energy regimes:
 - capturing energy dependence induced by new phenomena
 - \blacktriangleright leverage arm on H(HH) couplings from measurements at different energy regimes.

The 4ℓ final state

- Use SMEFT for probing the sensitivity to BSM couplings
 - ▶ Produced dedicates samples for signal and background and different polarisation states.
 - ightharpoonup Currently probing c_{pg} and c_{pt}
- ullet Focus (first) on the very pure $H{ o}ZZ{ o}4{m \ell}(+{
 m jj})$ final state.
 - Final state selection $p_T(\ell) > 5$ GeV and $|\eta| < 2.7$.
 - Isolate sensitivity to Higgs couplings in $gg(\rightarrow H) \rightarrow Z_{\rm L}Z_{\rm L}$
 - lacktriangle Exploit differences between $qq{
 ightarrow}{
 m ZZ}$ and $gg{
 ightarrow}Z_{
 m L}Z_{
 m L}$

00000000 g

Brookhaven⁻

G. Barone

The 4ℓ final state

- Use SMEFT for probing the sensitivity to BSM couplings
 - Produced dedicates samples for signal and background and different polarisation states.
 - ightharpoonup Currently probing c_{pg} and c_{pt}
- Focus (first) on the very pure $H \rightarrow ZZ \rightarrow 4\ell(+jj)$ final :
 - Final state selection $p_T(\ell) > 5$ GeV and $|\eta| < 2.7$.
 - Isolate sensitivity to Higgs couplings in $gg(\rightarrow H) \rightarrow Z_L Z_L$
 - lacktriangle Exploit differences between $qq{
 ightarrow}{
 m ZZ}$ and $gg{
 ightarrow}Z_{
 m L}Z_{
 m L}$

G. Barone

December-21

The 4ℓ final state

- Use SMEFT for probing the sensitivity to BSM couplings
 - ▶ Produced dedicates samples for signal and background and different polarisation states.
 - ightharpoonup Currently probing c_{pg} and c_{pt}
- Focus (first) on the very pure $H \rightarrow ZZ \rightarrow 4\ell(+jj)$ final state.
 - Final state selection $p_T(\ell) > 5$ GeV and $|\eta| < 2.7$.
 - Isolate sensitivity to Higgs couplings in $gg({
 ightarrow} H){
 ightarrow} Z_{\rm L}Z_{\rm L}$
 - lacktriangle Exploit differences between $qq{
 ightarrow}{
 m ZZ}$ and $gg{
 ightarrow}Z_{
 m L}Z_{
 m L}$

Analysis structure

- Make use angular distributions in multivariate analysis to discriminate:
 - (i) Between $qq{
 ightarrow} ZZ$ and $gg{
 ightarrow} Z_LZ_L$
 - (ii) Isolate polarisation states of vector bosons.

Analysis structure

- 2D analysis structure, for categorising qq-induced and gg-induced polarised vector bosons
 - (i) Between $qq{\rightarrow} ZZ$ and $gg{\rightarrow} Z_LZ_L$
 - (ii) Isolate polarisation states of vector bosons.

G. Barone

Conclusions & Next steps

- Look for new physics in the interplay of the off shell and on shell Higgs
 - ▶ Exploit the energy growing sensitivity in polarised vector bosons.
 - \blacktriangleright Project measurements of (double) differential cross sections on 4ℓ final state
 - \bullet $qq \rightarrow Z_{(L)}Z_{(L)}+jj$ vs $H \rightarrow gg \rightarrow Z_{(L)}Z_{(L)}$ (+jj)
 - ▶ Correlate couplings in different regimes to capture energy dependence.
 - ▶ Interpret measurements in context of EFT.
- Expand measurements to (H \rightarrow) $W_{(L)}W_{(L)}\rightarrow \ell \nu \ell \nu (+jj)$
 - lacktriangledown Tackle $t\overline{t}$ background with MVA methods.
- Investigate sensitivity in lepton colliders through ZH production

Additional material.

Couplings interpretations

Production mode

Results interpreted in the context of new physics:

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i}^{N_{d6}} \frac{c_i}{\Lambda^2} O_i^{(6)} + \sum_{j}^{N_{d8}} \frac{b_j}{\Lambda^4} O_j^{(8)} + \dots$$

- ▶ Standard Model Effective Field Theory as the standard candle.
- ▶ Probe for non-SM contributions to the tensor structure of the Higgs boson.

Enhance sensitivity

by isolating dependencies in Wilson coefficients (c_i) allowing for simultaneous extraction through eigenvector decomposition of the dependencies.

13

Coefficient	Operator	Example process
c_{HDD}	$\left(H^\dagger D^\mu H\right)^* \left(H^\dagger D_\mu H\right)$	$ \begin{array}{cccc} q & & & q \\ \hline Z & & & & H \\ q & & & & q \end{array} $
c_{HG}	$H^\dagger H G^A_{\mu u} G^{A\mu u}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
c_{HB}	$H^\dagger H B_{\mu u} B^{\mu u}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
c_{HW}	$H^\dagger H W^I_{\mu u} W^{I \mu u}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
c_{HWB}	$H^\dagger au^I H W^I_{\mu u} B^{\mu u}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
c_{eH}	$(H^\dagger H)(ar{l}_p e_r H)$	$H \longrightarrow \ell$
$c_{Hl}^{{\scriptscriptstyle (1)}}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{p}\gamma^{\mu}l_{r})$	$q \searrow Z \stackrel{\ell}{\underset{H}{\swarrow}} \ell$
$c_{Hl}^{{\scriptscriptstyle (3)}}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	$q \longrightarrow W \stackrel{\nu}{\underset{\ell}{\swarrow}} \stackrel{\nu}{\underset{H}{\swarrow}}$
c_{He}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$	$ \begin{array}{c} q \\ q \end{array} $ $ \begin{array}{c} e \\ e \\ H \end{array} $
$c_{Hq}^{{\scriptscriptstyle (1)}}$	$(H^\dagger i \overleftrightarrow{D}_\mu H) (\bar{q}_p \gamma^\mu q_r)$	q Z ℓ ℓ H
$c_{Hq}^{{\scriptscriptstyle (3)}}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	q ψ ψ ψ H
c_{Hu}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$	$\begin{array}{c c} u & Z & \ell \\ u & & H \end{array}$
c_{Hd}	$(H^\dagger i \overleftrightarrow{D}_\mu H) (\bar{d}_p \gamma^\mu d_r)$	$\begin{array}{c c} d & Z & \ell \\ d & & H \end{array}$

Results interpreted in the context of new physics:

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i}^{N_{d6}} \frac{c_i}{\Lambda^2} O_i^{(6)} + \sum_{j}^{N_{d8}} \frac{b_j}{\Lambda^4} O_j^{(8)} + \dots$$

- ▶ Standard Model Effective Field Theory as the standard candle.
- ▶ Probe for non-SM contributions to the tensor structure of the Higgs boson.
- Account for BSM acceptance effects in kinematic observables of decay products

14

- Results interpreted in the context of new physics:
 - ▶ Results in both

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i}^{N_{d6}} \frac{c_i}{\Lambda^2} O_i^{(6)} + \sum_{j}^{N_{d8}} \frac{b_j}{\Lambda^4} O_j^{(8)} + \dots$$

- ◆ linear approximation for dim-6 operators and,
- lacktriangle linear plus quadratic approximation for general sensitivity to dim-8, suppressed by Λ^{-4}

Introduction

$$|H|^2 = \frac{1}{2} \left(v^2 + 2hv + h^2 + 2\phi^+\phi^- + (\phi^0)^2 \right)$$

- Theorists investigate study of H couplings in off-shell production.
 - Sensitivity in longitudinally polarized vector bosons production.
 - Growth of sensitivity with energy
 - ▶ Sensitivity to K_g K_V K_t from:

$$\kappa_t : pp \to jt + V_L V_L' \qquad \kappa_g : pp \to W_L^+ W_L^-, Z_L Z_L$$

$$\kappa_V : pp \to jj + V_L V_L',$$

- Sensitivity from on shell production
 - Well-known analyses in the Higgs sector.
 - Sensitivity to Kg KV Kt from:
 - ★ Kg differential measurements targeting ggF.
 - ◆ K_V VBF measurements in ZZ* WW*

<u>'</u>			НС	HwH	Growth
	κ_t	${\cal O}_{y_t}$	og de le		$\sim rac{E^2}{\Lambda^2}$
	κ_{λ}	\mathcal{O}_6	900	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	$\sim rac{vE}{\Lambda^2}$
	$\kappa_{Z\gamma} \ \kappa_{\gamma\gamma} \ \kappa_{V}$	$egin{array}{c} \mathcal{O}_{WW} \ \mathcal{O}_{BB} \ \mathcal{O}_{r} \end{array}$	2222		$\sim rac{E^2}{\Lambda^2}$
	κ_g	\mathcal{O}_{gg}	9999	3000 1	$\sim rac{E^2}{\Lambda^2}$

♦ K_t (loop) from p_T^H spectra and clean signatures in $t\bar{t}H$, $H \to ZZ \to 4\ell$

16

HwH+HC

- Relation of the two:
 - ▶ Identify observables from both classes of processes most sensitive.
 - **★** Ex: HC: p_T^H , p_T^H vs N_j etc and in HwW: H_T , (angular) distributions sensitive to polarisation.
 - In VBS (HwH) and VBF (onshell) possibility of double simultaneous study from same final state at the two different energy regimes.
- ▶ Plans and stages:
 - ▶ MG model for HwW should be available from $HwH: |\delta \kappa_g| \lesssim 0.24/0.06/0.01$
- HC: $|\delta \kappa_g| \lesssim 0.025$ HwH: $|\delta \kappa_g| \lesssim 0.24 / 0.06 / 0.01$ (10) HwH (no $\bar{q}q \to Z_T Z_T$): $|\delta \kappa_g| \lesssim 0.09 / 0.02 / 0.005$
 - Select longitudinally polarised vector bosons
 - Onshell production truth samples easily available.
 - Start investigating the sensitivity at truth level and build a rough analysis.
 - If promising, all study backgrounds and detector level quantities.
 - Delphes or else, still to be discussed.

